ACADEMIC SESSION: 2022-23

Discipline : CIVIL ENGG	Semester : 3RD	Name of the Teaching Faculty : DEBASIS LENKA
Subject :	No. of days / week	Semester From date:
GEOTECHNICAL ENGG	class allotted	1 ST : 15/09/2021 to 22/12/2022
		Nos. of Weeks per semester : 14
Week	Class Day	Theory/ Practical Topics
	1 st	Soil and Soil Engineering
	2 nd	Scope of Soil Mechanics , Origin and formation of soil
1 ST	3 rd	Soil as a three Phase system.
	_	·
	4 th	Water Content, Density, Specific gravity, Voids ratio, Porosity
	1 st	Percentage of air voids, air content
	2 nd	degree of saturation, density Index,
2 ND		Bulk/Saturated/dry/submerged density
	3 rd	Interrelationship of various soil parameters
	4 th	-DO-
	1 st	Water Content , Specific Gravity
3 RD	2 nd	Particle size distribution: Sieve analysis,
	3 rd	wet mechanical analysis, particle size distribution curve and its uses
	4 th	Consistency of Soils, Atterberg's Limits, Plasticity Index,
		Consistency Index, Liquidity Index
	1 st	Classification of Soil
	2 nd	Classification of Soil
4 TH	_	
	3 rd	I.S. Classification
	4 th	I.S. Classification
	1 st	Plasticity chart
-711	2 nd	Plasticity chart
5 [™]	3 rd	Concept of Permeability
	4 th	Darcy's Law
6 ^{тн}	1 st	Co-efficient of Permeability, Factors affecting Permeability.
	2 nd	Constant head permeability
	3 rd	falling head permeability Test.
	1	

	4 th	effective stress	
7 TH	1 st	phenomenon of quick sand	
	2 nd	Compaction, Light and heavy compaction Test,	
	3 rd	Optimum Moisture Content of Soil, Maximum dry density	
	4 th	4 th Zero air void line, Factors affecting Compaction	
	1 st	Field compaction methods and their suitability	
8 TH	2 nd	Consolidation, distinction between compaction and consolidation.	
	3 rd	Consolidation, distinction between compaction and consolidation.	
	4 th	Terzaghi's model analogy of compression/ springs showing the process of consolidation – field implications	
9 ^{тн}	1 st	Terzaghi's model analogy of compression/ springs showing the process of consolidation – field implications	
	2 nd	Shear Strength	
	3 rd	Concept of shear strength, Mohr- Coulomb failure theory	
	4 th	Cohesion, Angle of internal friction, strength envelope for different type of soil	
	1 st	strength envelope for different type of soil	
10 TH	2 nd	Direct shear test,	
10	3 rd	triaxial shear test	
	4 th	unconfined compression test and vane-shear test	
	1 st	Earth Pressure on Retaining Structures	
11 TH	2 nd	Active earth pressure	
	3 rd	Passive earth pressure,	
	4 th	Earth pressure at rest.	
12 th	1 st	2 Use of Rankine's formula for the following cases (cohesionless soil only) (i) Backfill with no surcharge	
	2 nd	(ii) backfill with uniform surcharge	
	3 rd	Foundation Engineering	
	4 th	Functions of foundations, shallow and deep foundation	
13 th	1 st	. different type of shallow and deep foundations with sketche	
	2 nd	Types of failure (General shear, Local shear & punching shea	
	3 rd	Bearing capacity of soil, bearing capacity of soils using Terzaghi's formulae & IS Code formulae for strip,	
	4 th	Circular and square footings,	
14 th	1 st	Effect water table on bearing capacity of soil	

	2 nd	Effect water table on bearing capacity of soil	
	3 rd	Effect water table on bearing capacity of soil	
	4 th	Plate load test	
15 th	1 st	Plate load test	
	2 nd	standard penetration test	
	3 rd	standard penetration test	
	4 th	NUMERICALS	